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This paper describes a simple encoder/decoder implementation scheme for the (63,56
BCH code which can be used to correct single errors and to detect any even-number of
errors. The scheme is feasible for onboard-spacecraft implementation.

Recently, it was shown in Ref. 1 that a Bose Chaudhuri and
Hocquenghem (BCH) code (Ref. 2) may be used to improve
command coding for future planetary exploration missions. A
block of command data of 64 bits is shown as follows:
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The first 56 bits, [, through I, are command informa-
tion, Py, P,, ..., Py are parity check bits of the (63,56) BCH
code, and F,=0 is a filler bit. This code (which may also be
referred to as an extended Hamming code, Ref. 3) will be
shown to give a single-error correcting, even-number-error
detecting capability advantage over the uncoded scheme, and
simple linear switching circuits can be used to improve the
encoding and decoding efficiency of it.

In order to generate the parity-check matrix of the (63, 56)
BCH code, it is necessary to find the generator polynomial g’
(x) for this code. By Ref. 2, Appendix C, an irreducible poly-
nomial in GF(26) is g*(x) = x® + x + 1. However, since the
reciprocal polynomial is also a primitive polynomial, the
reciprocal of g*(x), g(x) = x6 g* (1/x) =x® + x5 + 1, may also
be used. Further, since the code requires 7 parity check bits,
the parity check matrix generating polynomial g(x)= x6 +
x5+ 1 will give one fewer parity check. To obtain one addi-
tional parity check, one must find g'(x) of degree seven. One
possible such g'(x) is of the form:

g =+ DS +x5+ D) =xT+x5 +x +1 (D)
Since the sequence generated from the equation

xT=x5+x+1 2)
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has period 631, the period of the sequence generated from
£'(x), then the parity check matrix generated from Eq. (2) is
given in Table 1. Note that of is obtained by substituting « for
x in Eq.(2) and reducing modulo a7 + a5 + a + 1. Also
a%3=1.

The parity check matrix H generates a (63, 56) code which
is capable of correcting single errors and detecting any even-
number errors in-a code block of 63 bits. To show this, let C =
(Cga» Cg1» - Cp) denote the codeword. Then the syndrome
of Cis
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where C' designates the transpose of C. Let the received
codeword with an error be

R= (R62’R61’ .. .,R62Vj’. . "Ro) =C+E

=(C,C

2 Cerr C .. "CO) + (0,0,' - F . .,0)

e2-)’ 62-j’

where E represents the error code word. Then the syndrome
S, of Ris

Hence j is the error location of the received codeword, and an
error is corrected.

Now observe that every column of H contains an odd
number of 1’s.2 If a double error occurs in locations ¢ and 7,

76 prove this, one first recalls from Theorem 2.3 of Golomb (Ref. 3)
that the period of the sequence / generated from the characteristic
polynomial f(x) is the smallest positive integer p for which f(x)i1 + xP
mod 2. Now let f'(x) = (x + 1) f(x). We must show that the sequence
generated by f'(x) also has period p. It is evident that x + 1|xP + 1.
Since also f(x)IxP + 1, then lem (x + 1, f(x))ixP + 1. Now since
ged(x + 1, f(x)) = 1 implies lem(x + 1, f(x)) = f'(x); hence f'(x)IxP + 1.
Further, assume that f'(x)ix* + 1 for all positive integer » < p. This
then implies that x* + 1= f(x) a(x) = f(x) b(x) and f(x)Ix" + 1. Hence
FOOIXY + 1 for fO)Ix? + 1.

2This is because Eq. (2) has 3 terms (or, in general, an odd number of
terms, say equal to 2M + 1 terms) on the right-hand side. Hence any
column in H generated from Eq. (1) contains the number of 1’s of the
form 2L + - 1 + 2M + 1)~ 2N =2 (L + M - N) + 1, which is
always odd.
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then

S =F

i = of +af = oF oF 7
VCE +E62;].oc’ o +al =", " eGF(27)

Since of and of each has an odd number of 1’s, a* must have
an even number of 1’s (ie.,, QM+ 1) + QN+ 1)=2(M +N +
1)) and is thus not contained in H. Hence, the double error is
detected. In fact, any number of double errors can be detected
by this code because the field element of the resulting syn-
drome contains the number of 1’s equal to 2N, + 1)+ (2N, +
D+@M, + 1)+ (M, +1)+---=2N, +N, +1 + M, + M,
+ 1 +---), which is even. Therefore, any double errors or even
number of errors are detectable by this code.

Once the desired parity check matrix generating polynomial
is determined, the encoder/decoder implementation scheme is
similar to that discussed by Berlekamp [Ref. 4, Chapter 5].
The encoder and decoder derived from g'(x) in Eq. (2) for the
code are depicted in Fig. 1. This indicates that only a 7-cell
shift register and 3 modulo-two adders are required for the
implementation of the encoder. To implement the decoder, a
77-cell shift register, 6 modulo-two adders and one OR gate
are needed. Any double errors can be monitored at the output
of the 7-input modulo-two adder.

The encoder operates this way: First, the shift register is
initialized to zero, and the three switches are posed in the up
positions. When the message source is turned on, a block of 56
information bits, /o, 7, ..., I , is shifted down the channel
and into the feedback shift register. Then the three switches
are placed in the down positions, but the shifting is continued
eight more times to generate the 7 parity check bits and one
filler bit (to make a 64-bit word). At this point, the feedback
shift register contains all zeros. Finally, all the switches are
toggled back up again, ready for encoding the next block of
information bits. The decoder operates as follows: After the
entire received codeword R = (Ry, R, ..., R;) has been
buffered into the top register, discarding the filler bit at the
end, the middle register contains the syndrome S, of R. The
field elements S, are then transferred to the bottom register,
while the middle register is reset to zero as indicated by the
dashed lines. This yields S a in the bottom register. (The
contents of this register are multiplied by « for each shift).
Hence the input leads to the OR gate carry 1 + 5 o as the
digit at location a~* deserts the buffer,7=1,2, ---,63.1f 1 +
Sl #0, then S, # o, so the digit at location o~ leaves the
buffer unchanged. However, if 1 +$,a/ =0, then S, = o/, and



the error is corrected as it departs the buffer. To monitor the
occurrence of an even number of errors, a 7-input modulo-two
adder is connected to the output of the bottom register. Since
an even number of errors will result in a field element syn-
drome having an even number of 1’s, a zero appearing at the
output of this modulo-two adder will indicate an uncorrect-
able error.

Since the implementation and its principle of operations
suggested above are simple, the (63,56) code is feasible for
onboard-spacecraft implementation. The code with the above
implementation scheme is suitable for incorporation into the
NASA telemetry command coding standard. This would result
in gaining a single-error correcting, even-number error detect-
ing capability advantage over the uncoded system.
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Table 1. Parity check matrix generated from x” = x* + x + 1

0,1

% 102030405 . . . 61,62

a“a

012345678901234567890123456789012345678901234567890123456789012
FIOOOOOOIOIOIOO110010001001011011000111010000110101110011110111{
010000011111101010110011011101101001001110001011110010100011000
001000001111110101011001101110110100100111000101111001010001100
000100000111111010101100110111611010010011100010111100101000110
00001000001111110101011001101110110100100111000101111001010001 1
000001010100110010001001011011000111010000110101110011110111110

000000101010011001000100101101100011101000011010111001111011111
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Fig. 1. Encoder/decoder for (63, 56) extended Hamming codes

119



